skip to main content


Search for: All records

Creators/Authors contains: "Hamm, Jihun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A catalytic surface should be stable under reaction conditions to be effective. However, it takes significant effort to screen many surfaces for their stability, as this requires intensive quantum chemical calculations. To more efficiently estimate stability, we provide a general and data-efficient machine learning (ML) approach to accurately and efficiently predict the surface energies of metal alloy surfaces. Our ML approach introduces an element-centered fingerprint (ECFP) which was used as a vector representation for fitting models for predicting surface formation energies. The ECFP is significantly more accurate than several existing feature sets when applied to dilute alloy surfaces and is competitive with existing feature sets when applied to bulk alloy surfaces or gas-phase molecules. Models using the ECFP as input can be quite general, as we created models with good accuracy over a broad set of bimetallic surfaces including most d-block metals, even with relatively small datasets. For example, using the ECFP, we developed a kernel ridge regression ML model which is able to predict the surface energies of alloys of diverse metal combinations with a mean absolute error of 0.017 eV atom−1. Combining this model with an existing model for predicting adsorption energies, we estimated segregation trends of 596 single-atom alloys (SAAs)with and without CO adsorbed on these surfaces. As a simple test of the approach, we identify specific cases where CO does not induce segregation in these SAAs.

     
    more » « less
  2. Structured illumination microscopy (SIM) reconstructs optically-sectioned images of a sample from multiple spatially-patterned wide-field images, but the traditional single non-patterned wide-field images are more inexpensively obtained since they do not require generation of specialized illumination patterns. In this work, we translated wide-field fluorescence microscopy images to optically-sectioned SIM images by a Pix2Pix conditional generative adversarial network (cGAN). Our model shows the capability of both 2D cross-modality image translation from wide-field images to optical sections, and further demonstrates potential to recover 3D optically-sectioned volumes from wide-field image stacks. The utility of the model was tested on a variety of samples including fluorescent beads and fresh human tissue samples.

     
    more » « less